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Diffusive turbulence in a confined jet experiment
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(Received 19 June 1995 and in revised form 4 December 1996)

An experimental analysis of the turbulence in an axisymmetrical jet within a closed
tube is presented. At some distance from the nozzle, a turbulent region develops, where
the kinetic energy of the mean flow almost vanishes. In this region, the turbulence is
transported by turbulent diffusion and its energy decreases with the distance from the
inlet. A complete description of the flow field has been achieved using laser Doppler
anemometry. Some unusual features are highlighted: the statistical moments of the
velocity decay exponentially, the integral length scales remain constant, the radial
profiles are self-similar and the Reynolds stress tensor is isotropic and homogeneous
in the radial direction. These results highlight the roles of pressure fluctuations and
any mean residual motion in the return to isotropy.

1. Introduction
To understand the fundamental properties of turbulence, investigating the ideal

situations where the contribution of mean motion is negligible is particularly useful.
The simplest case was selected by Batchelor (1953) to build his famous theory of
homogeneous and isotropic turbulence. In this case, however, the turbulent transport
due to the triple velocity correlations vanishes. As these terms are poorly understood,
several authors have focused their attention on inhomogeneous turbulence without
mean velocity gradient. Veeravalli & Warhaft (1989) performed an experimental
investigation of a ‘shearless turbulence layer’, created by matching two decaying grid
turbulences with different length scales and an identical mean velocity. They found
that, when gradients of mean flow are negligible, the turbulent transport is related
to intermittence and non-Gaussianity. Such a situation where turbulent transport
dominates has received particular interest with a view to improving the turbulence
models. Sonin (1983) used an analytical solution of the k–ε model in the case of
purely diffusive turbulence to find a relation between the constants of the model.
Lele (1985) found another relation for the diffusion of turbulence in a quiescent fluid.
More recently, Magnaudet (1993) used available data from diffusive turbulence to
develop a second-order closure model.

Surprisingly, most of the experiments devoted to inhomogeneous turbulence in the
absence of mean flow have been conducted without the main objective of improving
our fundamental knowledge of turbulence. Indeed, the literature contains several
examples of turbulent fields without mean motion realized for specific purposes.
From a historical point of view, the first experiment was carried out to investigate the
interaction of turbulence with a density layer (Rouse & Dodu 1955; Turner 1968).
The second was initiated by Sonin, Shimko & Chun (1986) to study the role of
turbulence on vapour condensation at a free surface. The third was to study the
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deformation experienced by a bubble in a turbulent field (Risso 1994). In both the
first and the second experiments, the objective was similar: the mean flow had to be
cancelled in order for the mixing near the interface to be controlled by turbulence
only. In the last experiment, it was necessary to suppress the mean flow to increase
the residence time of a bubble within the turbulent test section so that a possible
secondary contribution to the bubble deformations could be eliminated.

Unfortunately, there is no way, at least experimentally, to obtain the ideal situation
of homogeneous, isotropic and stationary turbulence with zero mean velocity. Indeed,
the turbulent energy is dissipated at smallest scales by viscous forces. The loss of
energy has to be compensated by supplying, at a certain time or location, energy at the
largest scales. This production of turbulent energy is done by the work of turbulent
stress through the mean rate of strain. Thus, turbulence cannot exist if a mean flow
never and nowhere existed. However, this ideal situation can be approached. A first
solution consists of producing the turbulence by an intense mixing. After the mean
flow has been suppressed, an homogeneous and isotropic turbulence that decays
with time can be obtained. Practical solutions have tended to use spatially decaying
turbulence obtained by the passage of a uniform flow across a grid (Batchelor &
Townsend 1947; Stewart & Townsend 1951; Corrsin 1963; Uberoi 1963; Comte-
Bellot & Corrsin 1971). Even when this solution produces quasi-isotropic stationary
turbulence, it implies the presence of a important mean advection which cannot be
accepted in the three aforementioned situations. Another solution leads to stationary
flow without advection but the homogeneity in one direction is lost. Turbulence is
produced by a steady flow and transported by turbulent diffusion far from the region
where it was created. This is ‘diffusive turbulence’ which transports itself and decays
as it moves from the production region. In the present study, we shall focus on
the properties of the turbulence that diffuses by eddy motion in the z-direction and
possesses homogeneity only in the perpendicular plane xOy. Is this situation possible?

It is easy to show that the strict answer is no. Indeed, what does homogeneity
and isotropy sustain and induce? It is well known that these properties imply in-
variance through translation and rotation of the different moments involving velocity
components or pressure of the fluctuating field. As a consequence of homogeneity
with respect to the direction xi, the spatial derivatives, ∂(̄ )/∂xi, must be identically
equal to zero. Moreover, a necessary – but not sufficient – condition of isotropy is
that the Reynolds stress tensor must be spherical. Let us consider a turbulent field
without mean motion, homogeneous with respect to both x and y, that diffuses in
the z-direction. The transport equations of the Reynolds stress tensor become (see
the Appendix, equation (A1)):
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where u and p are the velocity and pressure fluctuations, ρ the density, e the instan-
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taneous square-velocity, ε the turbulent dissipation rate and the overbar denotes a
statistical or time average. For the turbulence to diffuse, there can be no homogeneity
with respect to z. In addition, the isotropy cannot be strictly achieved. Indeed, if
the turbulence is isotropic, all the terms of (1) to (4) except for the dissipation term
must cancel. As the triple correlations are related to the spatial transport of turbulent
energy by turbulent diffusion, it is not surprising that the lack of homogeneity leads
to a restriction on isotropy. However, there is some hope that the tensor of the
second-order moments, i.e. the Reynolds stress tensor, is isotropic even if the tensor
of the third-order moments is not. Indeed, when the production by the mean flow
vanishes, one would expect the turbulence to approach a state in which turbulent
energy is distributed equally in each direction. To avoid any confusion, this weak
isotropy will be further referred to below as ‘energetic isotropy’.

Nevertheless, the analysis of (1) to (4) shows that there is no obvious reason
why energetic isotropy occurs in such a flow. Let us assume that the Reynolds
stress tensor is spherical in a given plane z = z0. It is likely that the correlation
between z-fluctuations and z-energy uzu2

z is greater than that between z-fluctuations

and x-energy uzu2
x. For isotropy to continue to be preserved, say at z = z1 > z0,

another mechanism is needed to compensate for this imbalance. If we accept that the
dissipation, which involves the smallest-scale eddies, is isotropic, only the pressure–
velocity correlation can take this role. When turbulence production is negligible,
Magnaudet (1993) found, for nearly homogeneous and isotropic turbulence, that
∂uzu2

x/∂z = ∂(uzu2
z + (2/ρ)puz)/∂z = − 2

3
ε and that u3

z is three times uzu2
x. Thus,

the condition for the energetic isotropy to be maintained becomes puz = −ρeuz/5.
According to this, the diffusion by pressure fluctuations should balance the relative
excess of diffusion by z-velocity fluctuations for energetic isotropy. However, we
are still unable to predict the behaviour of the diffusive turbulence from theoretical
grounds. What does an experiment tell us about it?

To the best of our knowledge, only two different kinds of experimental set-ups
have been used to produce diffusive turbulence. The first was done by Rouse & Dodu
(1955), followed by Bouvard & Dumas (1967) and Turner (1968). Many subsequent
experiments used a similar arrangement, namely Thompson & Turner (1975), Hop-
finger & Toly (1976), McDougall (1979), Brumley & Jirka (1987), Hannoun, Fernando
& List (1988), De Silva & Fernando (1992) and Fernando & De Silva (1993). The
turbulence is produced by a horizontal grid oscillating in the vertical direction inside
a square tank. At a certain distance, z, far from the grid, diffusive turbulence whose
kinetic energy decays as z−2 and whose integral length scales increase linearly with z
is obtained. A residual mean flow has been often observed, such as that pointed out
by Hopfinger & Toly (1976). In his experiment, McDougall (1979) tried to analyse its
structure but the phenomenon was too complex to interpret. More recently, Fernando
& De Silva (1993) claimed that the mean flow may be eliminated by a judicious
choice of the near-wall shape of the grid. In addition to the residual mean flow,
energetic isotropy is never realized in any of these experiments. In the best case, the
ratio between horizontal and vertical r.m.s. velocities is equal to 1.2. Because this
flow condition was considered more as a tool than as a subject of investigation, none
of the foregoing studies presented a whole description of the flow field. There are,
however, some interesting conclusions worth quoting. Hopfinger & Toly (1976) have

used (4) and assumed that all statistical moments involved are proportional to u2
z

3/2
.

The measurements of Hanoun et al. (1988) show that euz = 2u3
z .

In the experiments of Sonin et al. (1986), the turbulence is produced differently. The
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experiment consisted of an axisymmetric jet discharging through a nozzle into one
end of a tube. The tube is closed at its other end so that the fluid must be evacuated
through an orifice near the nozzle. At a certain distance from the nozzle, the mean
motion decreases sufficiently for diffusive turbulence to develop. In this region, the
turbulent kinetic energy decays exponentially and the integral length scales remain
constant. Despite these promising results, a detailed investigation of the turbulence
properties has not yet been carried out.

The goal of this paper is to fill this gap, with the aim of improving our understanding
of the mechanisms involved in flows dominated by turbulent transport. The confined
jet experiment was chosen here for several reasons. This configuration guarantees
stationary boundary conditions whereas the oscillating grid may lead to periodic
fluctuations of the velocity field interacting with the turbulent motion. The geometry
is simple and enables a complete investigation of the flow field.

2. Experimental set-up and instrumentation
The test section consisted of a glass tube of inside diameter, D = 77 mm, and

length H = 600 mm. The tube is closed at the top (figure 1). Both the inlet and
outlet for the liquid are located at the bottom. The liquid enters through a circular
nozzle of diameter d = 10 mm, centred at the axis. It is evacuated through an annular
passage having an inner diameter D′ = 70 mm, and an outer diameter D. Special care
was taken to guarantee the symmetry of both nozzle and annulus with respect to the
tube axis. The liquid is supplied from a centrifugal pump to the nozzle through a
convergent section. This ensures a uniform velocity profile and a turbulence intensity
of less than 2% at the inlet of the test section. Tap water was used for the present
experiments with velocity at the nozzle exit, U0, in the range 2–10 m s−1. Before each
experiment, this velocity was measured at the axis and its stability with time was
carefully checked.

Most of the experimental results were obtained in the aforementioned geometry
which will be referred further to as ‘test section 1’. However, to check the sensitivity
to the flow geometry, a two-thirds-scaled test section with variable length, referred
to as test section 2, was used. The flow conditions are characterized by the four
dimensionless numbers: the Reynolds number, Re = U0D/ν, the nozzle-to-tube
diameter ratio, α = d/D, the inlet to outlet area cross-section ratio, β = d2/(D2−D′2),
the diameter-to-length ratio, γ = H/D.

The experiments were carried out for the following flow conditions: for test section
1 α = 0.195, β = 0.22, γ = 7.7, Re = 150 000; for test section 2, α = 0.186, β =
0.22, γ = 6.7, 8.1, 9.6, Re = 20 000, 45 000 and 95 000.

The instantaneous velocity was measured by laser Doppler anemometry (LDA).
Two kinds of measurements were done. On the one hand, simultaneous one-point
measurements of either axial and azimuthal or axial and radial velocity components
were performed. The correlations between the velocity components could be deter-
mined except for the cross-correlations involving radial and azimuthal components.
On the other hand, simultaneous two-point measurements of the axial velocity com-
ponent were made. One point was fixed on the axis while the coordinates of the other
point were varied, either in the axial or radial direction.

Two sets of LDA equipment were used. The main one consisted of an argon
Spectra Physics 2 W laser and a Dantec Fiber Flow anemometer with a two-
dimensional optical probe of 60 mm. It was used with a Bragg cell, a beam expander
and a 310 mm lens, in backward scattering mode for the one-point measurements.
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Figure 1. Experimental apparatus and the qualitative mean velocity field: points where Uz = 0.

Additional equipment, including a helium–neon Spectra Physics 35 mW laser and
a 55X modular optics with a focal length of 300 mm, was used for the two-point
measurements. This less-powerful LDA was used in forward-scattering mode. It was
kept fixed while the optical probe of the main equipment was shifted to different axial
or radial locations.

The optical probe was fixed vertically on a gear which could be displaced hori-
zontally in two perpendicular directions. The laser source and the photomultiplier
of the additional equipment were kept fixed together on another gear that could be
displaced vertically. The displacement of the measuring volume was obtained with an
uncertainty of ±1/10 mm.

The Doppler signals were processed with Dantec Burst Spectrum Analysers, model
57N10. The data were recorded on the hard disk of a personal computer and ulti-
mately processed with custom software. The results from the digital signal processing
were compared to the output of two analog voltmeters for mean and r.m.s. values
respectively. The independence of the measurements with respect to the magnitude of
the Bragg shift was also verified. A water-filled transparent Plexiglas box with parallel
sides was placed around the cylindrical tube to reduce the optical refraction through
the wall of the tube. The residual optical refraction of the laser beam induced small
errors in the measurements of the radial and azimuthal components of the velocity.
These errors never exceeded 1.5% of the magnitude of the velocity and 3.5◦ for its
direction. They were corrected, in both position and magnitude, with custom software.

Mean velocity, various velocity moments up to fourth-order, time correlation
functions and frequency spectra were determined from the one-point measurements
whereas space correlation functions were determined from the two-point measure-
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ments. The statistical moments of the velocity umi (x, t) were determined from statistical
averages, each sample being weighted by the interval between its arrival time and that
of the preceding sample. The time for data acquisition was between 200 and 1000 s.
This allowed 104 to 105 samples to be used for the determination of the statistical
averages. In each case, this number was large enough to ensure that the statistical
convergence was better than 1% for the mean velocities and standard deviations,
and better than 3% for the third and fourth moments. Besides, the results were
reproducible. The differences at locations where the measurements were the most
error-prone never exceeded 4% for the mean velocity and standard deviation, and
8% for the third and fourth moments.

The symmetry of the flow with respect to the axis was carefully checked by using
different tests. It was verified from the profiles of the three velocity components over
the pipe radius. The verification was done for θ = 0 and θ = π at six different
longitudinal cross-sections and for θ = π/2 and θ = 3π/2 at three of them. Up
to the fourth-order moments, the symmetry was clearly observed (see for example
figure 9 where the radial profiles of the mean velocity and standard deviation of
two components of the velocity were plotted for θ = 0 and θ = π). For standard
deviations, the errors found were always less than 3%. Furthermore, the mean θ-
component magnitude was always negligible (less than 1% the axial one). There was
no swirl. Finally, the mean r-component and the turbulent shear stress measured on
the axis of symmetry were negligible in comparison with the mean and the standard
deviation of the axial velocity respectively (less than 1%).

The conservation of mass was checked by integration of the radial profiles of the
axial mean velocity which must be zero. The maximum error was everywhere less
than 4% of the inlet flow rate. Because pressure could not be measured within the
tube, the conservation of mean momentum was not checked.

The determination of the one-point or two-point cross-correlations umi (x, t)unj (x+ ξ, t)
was also obtained from statistical averages of products involving two velocity com-
ponents. However, since each component was randomly sampled by the LDA, the
simultaneity of each pair of samples was not ensured. A criterion which retains the
pair of velocity samples falling within a given time interval ∆t, was applied. For the
one-point correlations, ∆t was taken to be equal to 0.01 ms, and for the two-point
correlations 1 ms for z/D = 3.9, 4.5 and 2 ms for z/D = 5.2. The time–velocity
correlation functions umi (x, t)unj (x, t+ τ) were determined with a similar method. The
statistical averages at each time lag τ = n∆τ were calculated over all the pairs of
velocity components that fall within the interval [(n − 0.5)∆τ, (n + 0.5)∆τ]. The fre-
quency spectra were determined with an FFT algorithm from blocks of 2048 velocity
data points that were numerically resampled at a constant rate from the original data
using an interpolation algorithm.

3. General description of the flow field
3.1. Evolution of mean velocity and turbulence on the axis

The turbulent flow of a jet in a closed tube has some original features which can be
highlighted, using the evolution of the mean velocity and higher moments on the tube
axis. The coordinates will be scaled by the tube diameter, D. This choice is dictated by
a reason that will be clarified below. The longitudinal component of the mean velocity
Uz , scaled by the velocity at the inlet U0, is plotted versus the distance from the inlet z
in figure 2. Over a short distance of about 0.5D the velocity remains constant as in the
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potential core of a free jet. Then the velocity decreases strongly under the influences
of both turbulent diffusion and flow confinement. Turbulent diffusion is responsible
for the transfer of momentum from the axis to the surrounding fluid similar to a free
turbulent jet. However, in contrast to the unbounded case in which the total flux of
momentum remains nearly constant with the distance, for the present geometry, the
total flux of mass must remain constant with z. The mixing process causes the velocity
profile to flatten with z and the total flux of momentum to decrease. This decay can
only be compensated by an adverse pressure gradient which, in turn, makes the
velocity drop faster with z. Nevertheless, instead of approaching zero asymptotically,
the mean velocity cancels near z = 3.6D. It continues to decrease further through
negative values. The velocity reaches a minimum value for z = 4.3D from which it
increases slowly to zero.

The general evolution of the turbulent quantities with respect to z is less surprising.
Figure 2 displays the standard deviation of the longitudinal and radial components

u2
z

1/2
, u2

r

1/2
of the velocity. In the potential core, the velocity gradients are negligible

and the turbulence level is weak. The fluctuations are induced by the growing mixing
layer and increase roughly by the square of the distance from the jet exit (Sunyach &
Mathieu 1969). Farther away than z ≈ D, owing to the high-strain-rate turbulence,
production leads to intense non-isotropic turbulence at the jet boundary. As in
unbounded jets, the standard deviations decrease with z due to the diminution of the
velocity gradient. The turbulence energy is redistributed from the axial component to

the other components, so that u2
z

1/2
, and u2

r

1/2
become nearly equal at some distance

from the inlet. We shall see later that the flow reaches an asymptotic state at this
particular location ze = 4.4D.

As expected, the turbulence decay is less rapid than that of the mean flow. This
can be seen in figure 3 in which the ratio of the r.m.s. to the mean velocities ē1/2/U
has been plotted. This ratio continuously increases from the inlet. It becomes infinite
at the point where the mean velocity vanishes. It then decreases but remains between
300% and 500%. In this flow region the turbulence is significantly greater than the
mean motion. In parallel, the axial-to-radial r.m.s. velocities ratio (u2

z/u
2
r )

1/2 (figure 3),
which is initially about 1.7, decreases regularly and reaches unity at ze. There is a
tendency towards isotropy far enough from the inlet.

The evolution of some of the higher moments of the velocity are plotted in
figure 4 versus the distance, except for the region near the jet core. The moment u3

z ,
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responsible for the diffusion of the z-velocity fluctuations, is normalized by u2
z

3/2
. This

ratio introduces the skewness factor of the z-component. It increases from zero near
z = 2D to reach its maximum at z ≈ 3.9D, then decreases and reaches unity from
z = ze. The third-order moment, uzu2

r , responsible for the diffusion of the r-velocity

fluctuations is normalized by u3
z . This ratio always remains smaller than unity and

increases to reach a constant value of 0.5. The fourth-order moments, u4
z and u4

r ,

are normalized by u2
z

2
and u2

r

2
respectively. The corresponding ratios introduce the

flatness factors of the axial and radial velocity fluctuations. They both approach a
value nearly equal to 6 from z > ze. From these results, it may be noted that the
turbulence is close to Gaussianity only in the very short region 1.5 6 z/D 6 2.3.
In this region, the inlet conditions are forgotten and the diffusion of turbulence is
not yet predominant so that turbulence is controlled by the mean velocity gradient.
Elsewhere, the statistical behaviour of the turbulence is much more complex.

The evolution with respect to z of the double, triple and quadruple velocity
correlations of uz and ur are shown in figure 5 using a semi-log representation. From
ze, the evolutions appear almost linear with ln(z). The nth order moment Mn decays
exponentially with z as

Mn(z) = Mn(z0) exp[−(z − z0)/Ln].
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L/D 0.96 1.00 1.01 1.03 1.03 1.02 1.02

Table 1. Exponential scales of decay

More interesting is the fact that the characteristic length scale of decay Ln of the
nth-order moment is simply equal to L/n, where L is the same for all the moments.

Thus M
1/n
n follows the same law whatever the value of n. The law of decay is the

same provided that each moment be expressed in the same dimension:

Mn(z) = Mn(z0) exp
[
−nz − z0

L

]
. (5)

The values of L were determined using a least square fit of (5) and are given in table 1.
It turns out that this length scale is nearly equal to the tube diameter, L = 1.0D.
Straight lines corresponding to (5) have been drawn on figure 5, showing the good
agreement with the experimental results. Far from the inlet, the flow behaviour is
controlled by the lateral confinement, thus confirming a posteriori the choice of the
diameter for scaling the coordinates.

The kinematic structure of mean and turbulent properties of the velocity field
on the tube axis shows some peculiarities of the flow behaviour. Indeed, both
lateral confinement due to the tube wall and longitudinal confinement caused by the
endwall, compel the flow to restructure from a typical shear flow (0 6 z 6 1.5D)
to an exponentially decaying diffusive turbulence (z > ze). The transition between
these two states involves different successive steps. The first step takes place in the
region dominated by the mean velocity. The interaction of the mean flow with the
tube boundary causes the jet expansion to stop. This is illustrated in figure 1 by
the behaviour of the line of zero axial velocity near z = 1.5D. The second step
is more gradual. The mean velocity progressively decreases and the flow becomes
dominated by the turbulence near z = 3D. As the turbulence level is not maintained
by production, it decays with z and the size of the larger eddies increases. The third
step is when their size reaches the tube diameter. They stop growing and the turbulent
scale is controlled by the tube diameter.

The above physical distinction between different flow regions is reinforced by the
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analysis of the turbulent budget (see the equations and definitions in the Appendix).
For this purpose the different terms involved in the transport equation of u2

z , i.e. the
turbulent diffusion in the z-direction Tu∗zz , the advection by the mean flow Ad∗z and
the production by the mean strain rate Pr∗z , have been plotted in figure 6 at the
tube axis. The radial turbulent diffusion Tu∗zr , the dissipation E∗z and the two terms
involving the pressure fluctuations Tp

z
and Rp

z
have been grouped together into

the rest Rest∗z which has been determined from the difference. Note that the starred
quantities are made dimensionless by dividing the non-starred quantities in (A2) by

u2
z

3/2

/D. In the whole region dominated by the mean flow (z 6 3D), the turbulence is
mainly controlled by a classical balance between production and dissipation. Farther
away from the inlet, the contribution of the turbulent diffusion to the total budget
increases and, for z > 3D, the turbulence is controlled by a diffusion–dissipation
balance. However, beyond ze, the turbulence decays exponentially and the relative
contribution of each term in the turbulent budget remains constant. This particular
turbulence will be analysed further in detail.

3.2. Sensitivity to the dimensionless parameters

We have first considered the results obtained in test section 1 at Re = 150 000 and
for a specific flow geometry, namely α = 0.195, β = 0.22, γ = 7.7. We shall discuss
now whether this structure is maintained when the Reynolds number and the flow
geometry are changed. For this purpose, test section 2 was used. Basically, this test
section has nearly the same nozzle-to-tube diameter ratio α (0.186) and the same inlet
to outlet cross-section ratio β, but its length can be modified.

Apart from our experiments, only few other data sets exist in the literature, and
the axisymmetric jet in a closed pipe has not been investigated in much detail. To
our knowledge, the earlier experiments, mentioned in Abramovich (1963), are due to
Rosenberg (1963). His results show the mean velocity of the axis of a jet issuing from
an inner tube of diameter d, placed in an outer tube of diameter D. Two different outer
tubes were utilized by Rosenberg. Using our notation, his experiments correspond to
α = 0.186, β = 0.053 and to α = 0.087, β = 0.0092. Neither the Reynolds number
nor the tube length were specified. More recent results have been obtained on the
axisymmetric confined jet at MIT by Sonin et al. (1986), Brown, Khoo & Sonin
(1990), and Khoo & Sonin (1992). Their pipe was closed by a plug at the bottom
while the top was the liquid surface instead of a rigid wall. The inlet consisted of
a tube, symmetrically placed through the plug, with the outlet tube located next to
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the inlet tube. Near the outlet, the symmetry with respect to the axis is thus broken.
With their geometry, the nozzle-to-tube diameter ratio is α = 0.05 but β cannot be
determined. They performed observations of solid tracers and measured the velocity
field by LDA. Later, Khoo et al. (1992) used a PIV method in an identical facility.

Figure 7 shows the distribution of mean velocity on the tube axis for Re =
22 000, 45 000, 97 500 and 150 000. In this range, since the flow is not sensitive to
the Reynolds number, the results are identical. In particular, the coordinate at which
the mean velocity vanishes is the same for each case. We have also verified that the
r.m.s. velocities do not depend on the Reynolds number. This invariance property
has been already demonstrated by Sonin et al. (1986) and Khoo & Sonin (1992) in
the exponentially decaying region. They showed that no influence can be detected
for Re > 25 000. From a practical point of view, this behaviour is of major interest
since the turbulence level can be chosen by adjusting the inlet velocity, without any
significant consequences for the flow structure.

In studying the influence of the tube length, another interesting conclusion can be
reached. Four different geometries have been used, characterized by the values of the
diameter-to-length ratio γ = 6.7, 7.7, 8.1, 9.6. As shown in figure 7, the conclusion is
the same as for the Reynolds number. No influence can be observed provided that
the tube is long enough for the region of exponential decay to develop. Indeed, the
evolution of the flow structure from the initial turbulence, dominated by production,
to the final one, dominated by diffusion, though essentially related to the existence of
the closed end, is independent of its location. Whether the tube is confined by a plug
or by a free surface the results are identical, except near the end where the boundary
conditions are not the same.

The inlet-to-outlet area cross-section ratio β also has a weak influence, acting
mainly on the total pressure drop between the inlet and the outlet. In contrast
to β, γ and Re, to which the flow structure is weakly sensitive, the nozzle-to-tube
diameter ratio α is the key geometrical parameter because it characterizes the lateral
confinement. This is clear for the mean velocity whose axis evolution is displayed on
figure 8. Our results are compared to the results for a confined jet in a closed tube of
Rosenberg (1963) and those of a free axisymmetrical jet in an unbounded medium of
Chassaing (1979). For the result to be compared to the free jet case, the z-coordinate
was normalized by the nozzle diameter d. For α = 0.186, our results coincide with
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those of Rosenberg. In the experiments of Sonin et al. (1986), Khoo & Sonin (1992)
and Khoo et al. (1992) the value of α is 0.05. Unfortunately, they did not perform a
complete investigation of the flow since they did not give the mean velocity. Although
the results are far from extensive, we may, however conclude from figure 8 that the
greater α becomes, the faster the decay of the mean velocity with respect to z. The
influence of α on the turbulence, the flow structure and the properties of the diffusive
region, does not clearly emerge from these results. Sonin et al. (1986), Khoo & Sonin
(1992) and Khoo et al. (1992) determined the evolution of the r.m.s. velocity and
of the diffusive time and length scales for z > 3D, from where the isotropy ratio
(u2
z/u

2
r )

1/2 is nearly equal to unity in their geometry. Their results prove the existence
of an exponentially decaying zone of turbulence. Its corresponding length scale L,
as defined in (5), was found equal to 1.2D in the experiments of Sonin et al. (1986)
whereas it was 0.74D in the experiments of Khoo et al. (1992) for the same flow
conditions. They do not agree with our result since this length scale was found in
our experiments to be L = 1.0D (see table 1). According to this, the role of the key
parameter α remains unclear. However, the existence of a diffusive exponential zone
is shown to exist for α in the range [0.05–0.2].

4. The expansion (0 6 z/D 6 1.5)
Just after the nozzle, the flow has the distinctive characteristics of a jet. It expands

with an angle of about 10◦ and entrains the surrounding fluid. The turbulence
kinetic energy is maximum where the mean velocity gradient is maximum (figure 9,
z = 0.4D). A potential core, in which the turbulence properties are directly related
to the inlet conditions, exists up to z = 0.5D (figure 2). At z = 1.3D (figure 9), the
turbulence maximum has moved onto the axis. The z-evolution of the flow structure
is considerably faster than for a free jet. In a closed-end tube, the lateral confinement
prevents the pressure from being uniform in both the axial and radial directions.

5. The transition (1.5 6 z/D 6 4.4)
At the location where the cross-section area of the jet occupies nearly half of this

tube (z = 1.5D), the effect of the lateral confinement becomes significant. Farther
away, the lateral expansion stops and there exists a core of near constant radius in
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which the velocity is positive (r < 0.35D). This core is surrounded by an annular
layer in which the velocity is negative (0.35D < r < 0.5D). At the core boundary
(r ≈ 0.35D), the radial component of the mean velocity Ur is directed towards
the wall. Hence, the bulk velocity in the core decreases with z. Owing to the
lateral confinement, the mean flow structure has drastically changed with respect to
the region of expansion. Nevertheless, the turbulence is still dominated by similar
mechanisms involving production, advection and dissipation (figure 6). In this region,
the production of turbulence by the mean velocity gradient and the advection by the

mean flow remain constant in comparison with u2
z

3/2
/D. Moreover, the turbulence

energy budget shows that the production of turbulence energy is twice the amount
that comes from advection. Because the production still dominates in this region, the
isotropy ratio (u2

z/u
2
r )

1/2 remains greater than unity. The region ends when both r.m.s.
velocity and mean velocity have nearly the same magnitude on the axis. Figure 9
shows the radial profiles of statistical moments at this location, i.e. at z = 2.7D.

As shown in figure 4, the skewness of the axial velocity fluctuations increases
regularly from z = 2D, indicating that the relative contribution of the turbulent
diffusion in the axial direction increases with z. At z = 3D, this diffusion becomes
predominant in the equation for u2

z , its relative importance increasing up to z = 4D.
Thus, the axial component of the velocity fluctuations is mainly controlled by the
diffusion and dissipation processes. For z > 4D, the diffusion still dominates although
its contribution gradually diminishes to the same order as advection by the mean flow.
The radial component of the velocity fluctuations is qualitatively governed by the
same mechanism, but the contribution of the turbulent diffusion is less substantial.

As the turbulence production decreases with z, the Reynolds stress tensor becomes
less anisotropic. Indeed figure 3 shows that (u2

z/u
2
r )

1/2 drops in the range 3D 6 z 6 ze.
However, the return to isotropy is expected to be faster for the smaller scales, as
illustrated through the power spectra of the axial and the lateral velocity fluctuations
on the axis (figure 10). For z 6 4D, isotropy is only satisfied by the smallest eddies
corresponding to highest frequencies. As the turbulence production decreases when
z increases, isotropy is achieved for eddies of larger scales, so that the uz – and ur
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– spectra become almost indistinguishable for z > ze. Since the smallest-scale eddies
are isotropic in the whole domain, there is an important consequence. The dissipation
rates of u2

z and u2
r are the same. Therefore, as the diffusion of the axial component is

greater than the radial component, the redistribution by pressure fluctuations remains
the single candidate for compensating this difference in the budget of u2

z and u2
r , (A2)

and (A3). The pressure fluctuations are thus responsible for the evolution toward a
state of energetic isotropy.

Now, let us discuss the consequences on the lateral structure. Figure 11 shows the
radial profiles of mean velocities, the r.m.s. velocities and the second- and third-order
moments, for z = 3.9D. The profile of the axial component of the mean velocity has
a minimum (negative value) at the axis and a maximum close to the wall, whereas
the radial component is nearly equal to zero. The r.m.s. values of the fluctuating
velocities have been plotted for comparison. They are clearly greater than the mean
velocity over the whole cross-section, indicating that the turbulence dominates. The
components of the Reynolds stress tensor are two-dimensionally isotropic and two-
dimensionally homogeneous in a core situated between the axis and r = 0.35D.
Furthermore, the shear stress uzur is negligible compared to the diagonal terms. Yet,
the r.m.s. axial fluctuating velocity is 1.3 times greater than the radial one. Here, we
are close to the expected equilibrium between turbulence diffusion, dissipation and
possibly redistribution by pressure, equation (4).
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From z = 4D, the turbulent diffusion in the axial direction decreases quickly
whereas the energy tends to isotropy which is reached at ze. Before studying the final
region, we will discuss the behaviour of the time and length scales in the transition
region. The Eulerian integral time scales Tz and Tr were obtained from integration
of the autocorrelation functions:

Tz =

∫ ∞
0

Rzz(τ)dτ and Tr =

∫ ∞
0

Rrr(τ)dτ. (6)

Tz and Tr are plotted in dimensionless form in figure 12. Like the velocity scales,
these time scales tend to an asymptotic exponential behaviour which is nearly reached
at z = 3.9D. However, in the transition region, Tz is always greater than Tr . Another
physical feature can be elucidated from the evolution of the characteristic length scales
Lz and Lr , which can be formed by the products of the time scales and the r.m.s.
velocities: Lz = Tz(u

2
z)

1/2, Lr = Tr(u
2
r )

1/2. These scales are plotted in the same figure in
dimensionless form. In the transition region, Lz is greater than Lr and the difference
between them decreases when z increases. This gives the rough impression that the
largest eddies are flattened in the radial direction in the transition region. Finally, Lz
and Lr both tend towards the same constant value of about 0.16D. This asymptotic
value is reached by Lr at z = 3.9D; whereas it is reached by Lz at the greater distance
from the inlet of ze. This consolidates what has been pointed out in figure 5 about
the velocity scales. For the second-order, like the fourth-order, moments, the lateral
components reach asymptotic equilibrium before the axial ones. It seems that the
mechanism leading to isotropy makes the energy of the axial fluctuations tend to the
level of the radial ones.

As defined above, the length scales Lz and Lr are determined from one-point
measurements. Their interpretation is not simple because they are not representative
of the real spatial structure of the turbulence field. In order to determine the integral
length scales, Λ, two-point measurements are needed since, in the absence of mean
motion, such scales cannot be deduced from the Eulerian integral time scales. From
these measurements, the spatial cross-correlation coefficients,

f(∆z) =
uz(z, 0)uz(z + ∆z, 0)

[u2
z(z, 0) u2

z(z + ∆z, 0)]1/2
, g(∆r) =

uz(z, 0)uz(z,∆r)

[u2
z(z, 0) u2

z(z,∆r)]
1/2
, (7)

were determined first. The corresponding results at z/D = 3.9, 4.5 and 5.2 are plotted
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z/D 3.9 4.5 5.2

Λ−zz/D 0.30 0.25 0.26
Λ+
zz/D 0.26 0.27 0.29

Λ−zz/D 0.28 0.26 0.28

Λzr/D 0.096 0.095 0.099

Table 2. Integral length scales

in figure 13. Neither f(∆z) nor g(∆r) depend significantly upon the distance to the
nozzle. Although the turbulence is not homogeneous, f(∆z) is almost symmetrical.
For isotropic homogeneous turbulence, the relation between longitudinal and lateral
correlations (Batchelor 1953, p. 46) is

g = f + 1
2
rf′. (8)

To verify this, the value of g, calculated using (8) from experimental values of f, is
shown in figure 13. Theoretical and experimental values of function g coincide for
short separations, but for large separations, the lateral confinement causes a faster
decay than in unbounded homogeneous turbulence. The velocities at two points
further apart than D/2 are still significantly correlated. The corresponding length
scales have been evaluated by integration of these curves:

Λ−zz =

∫ 0

−∞
f(ς)dς, Λ+

zz =

∫ +∞

0

f(ς)dς, Λzz = 1
2
(Λ−zz + Λ+

zz), Λzr =

∫ D/2

0

g(ρ)dρ.

(9)

The results are presented in table 2. It is seen that the two integral scales remain
constant, their values being Λzz = 0.28D ± 7% and Λzr = 0.097D ± 3%. The
longitudinal integral length scale is close to the value Λzz = 0.27D obtained in
turbulent channel by Comte-Bellot (1965). The lateral one is close to the value
Λ = 0.07D determined by Khoo et al. (1992) from PIV measurements. In isotropic
homogeneous turbulence, integration of (8) shows that the longitudinal scale is twice
the lateral one. Here, due to lateral confinement which forces the fluctuations to
cancel at the wall, we found the larger value Λzz/Λzr = 2.9. In diffusive turbulence
generated by an oscillating grid, the integral length scales are known to increase
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linearly with the distance from the grid. This is also the case in grid turbulence in
which the size of the largest eddies increases with the distance. In contrast, the size
of the largest turbulent eddies grows to the size of the tube. This is achieved at
z = 3.9. Then, the lateral confinement restricts the size of the largest eddies which
stop enlarging.

Let us briefly summarize the role of the transition region in which the flow
restructures from a typical shear flow to a flow dominated by turbulent diffusion.
Two sub-transitions are observed. The first takes place at the location where the mean
flow interacts with the tube boundary. The jet expansion is stopped, then the mean
velocity gradually decreases and the flow starts to be dominated by the turbulence.
The second transition appears when the natural tendency for the largest eddies to
increase their size is stopped by the lateral confinement. From these observations it
can be inferred that the role of the lateral confinement is two-fold. On the one hand,
it forces the mean flow to vanish, leaving the main role to the fluctuating motion. On
the other hand, it maintains the size of the largest eddies of this fluctuating motion
constant. The turbulence which emerges from the transition region possesses some
peculiarities which should be emphasized. It is dominated by diffusion and the size of
its largest eddies is restricted. This turbulence will be further referred to as ‘confined
diffusive turbulence’, in contrast to the classical ‘free diffusive turbulence’ obtained in
grid experiments in unbounded domains.

6. The self-preserving confined diffusive turbulence (z/D > 4.4)
Although the integral length scales and the lateral r.m.s. velocities reach their

asymptotic behaviour at z = 3.9D, the other moments only do so at z = ze. Energetic
isotropy is achieved. The major consequence is that any ratio involving two moments
remains constant since these moments follow the same law of decay (5). The numerical
values of some of these ratios have been determined at the tube axis and are presented
in table 3. They have been obtained either from averaging 17 values of the moments
distributed in the range ze < z < 6.0D (the r.m.s. is then indicated) or from least-
squares fitting of the exponential curve. The result is remarkable: these ratios are
very simple rational numbers. The mean velocity Uz of the residual flow is half the
r.m.s. of each component. The third-order moment of the axial component u3

z is equal

to the cube of the r.m.s. velocity and to twice the third-order cross-moment uzu2
r . The

results obtained by Hanoun et al. (1988) in their experiment on turbulence behind an
oscillating grid present the same feature. They found that uze = 2u3

z , a result which
holds in the present experiment also. This specific outcome suggests generalizing to
higher-order moments the simple behaviours which were found for the second-, third-
or fourth-order moments. For example, the isotropy of the second-order moments is
also satisfied at the fourth order. We have tried checking this property for the even
moments of higher order and although they seem to follow the expected tendency,
the poor accuracy in calculating these moments does not allow any firm conclusions.
Another example is the generalization of the relation which holds for the third-order

moment u3
z = u2

z

3/2

. It seems that the odd moments of order 2n + 1 of the axial
component are equal to the corresponding even moments of order 2n to the power
2n/(2n + 1). It may be noted in passing that this power is a necessary condition
for the relation to be consistent from the dimensional point of view. The existence
of recurrence relationships for any order moments is conceivable, and knowledge of
this would make possible a complete description of the statistical properties of the
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(u2
r )

1/2

(u2
z)

1/2

Uz

(u2
z)

1/2

(u3
z)

1/3

(u2
z)

1/2

uzu2
r

u3
z

u4
z

u2
z

2

u4
r

u4
z

Mean value (ensemble average) 1.014 −0.463 1.001 0.465 6.293 0.931

r.m.s. value

mean value
(ensemble average) 0.026 0.124 0.041 0.249 0.153 0.133

Mean value (after smoothing) 1.00 −0.48 0.95 0.52 5.98 1.10

Table 3. Ratio of statistical moments in the self-preserving zone
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turbulence in the strongly non-Gaussian case. However, we did not succeed in finding
such recurrence rules from theoretical considerations.

Another interesting property of the region of exponential decay is the self-similarity
of the kinematic profiles. In order to illustrate this result, the radial profiles of the
moments up to the third order are plotted in figure 14. The various moments are
normalized by the axis values of Uz for the mean velocity components, of u2

z for

the second-order moments and of u3
z for the third-order moments. The radial profile

of each quantity at a distance z2 is identical to the profile at z1 multiplied by the
exponential decay between z2 and z1. Thus, in taking into account (5), any moment
of order n can be expressed in the form

Mn(r, z) = Mn(0, z0)F(r) exp
[
−nz − z0

L

]
, (10)

where F is a function that depends only on r. As a consequence, all the terms in (A1)
decay as exp[−3(z − z0)/L] except for the molecular diffusion Dv which decreases as
exp[−2(z − z0)/L]. Here, the molecular diffusion of velocity fluctuations is negligible,
but for large enough z, the law of decay shows that it should become dominant. As
in grid turbulence experiments, the last stage of decay would be driven by viscous
effects. The viscous-to-turbulent diffusion ratio is given by 1.5 × 10−6 exp(−z/L). In
the present experiment, this ratio is thus equal to 0.003 at the end of the tube, i.e. for
z = 7.7D.

Let us come back to figure 14 to point out that the components of the Reynolds
stress tensor are isotropic and two-dimensionally homogeneous in a central core of
radius r 6 0.2D. Near the tube wall, the radial velocity fluctuations are reduced,
although the axial and azimuthal fluctuations are increased. The velocity power
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spectra of figure 15 show that this anisotropy is clearly visible for the smallest
frequencies, i.e. for the largest eddies, whereas the energy density of the fluctuating
velocity components coincides for high frequencies in both radial locations r = 0
and r = 0.38D. This anisotropy of the largest eddies is again a consequence of the
flow confinement. Radial fluctuations are mainly caused by eddies with azimuthal
or axial vorticity. These eddies cannot induce radial fluctuations at a distance from
the wall smaller than their radius. It must be also pointed out that the domain of
homogeneity is less extended than at z = 3.9D. This is due to the alterations of

the profiles of u2
z and u2

θ , whereas the profile of u2
r remains the same. Not only is

the exponential decay of the radial velocity fluctuations reached, but also its self-
similarity is achieved before that of the other components. Concerning the triple
correlations, it may be seen (figure 14) that the relative magnitude of the moments
corresponding to the radial turbulent diffusion is greater than for z = 3.9D, although
it remains significantly smaller than the magnitude of the moments corresponding to
axial diffusion. Nevertheless, the comparison of radial and axial length scales suggests
that r-derivatives are larger than z-derivatives. Therefore, the relative importance of
radial and axial diffusion may be clearly established only by exploring the different
terms of (A1).

As mentioned before, the law of decay of the various moments of turbulence is
a direct consequence of flow confinement. The length scale of the largest eddies is
restricted. Let us consider a self-similar diffusive turbulence. Following our definition,
any two terms of the energy budget have a constant ratio. In such a case, the flux

of energy in the z-direction must necessarily be proportional to ∂u
3

z/∂z, whatever the
nature of the transport. This energy is supplied through the energy cascade to the
turbulent dissipation which can be taken proportional to −u3

z/Λzz . It yields

∂u3
z

∂z
= −C u3

z

Λzz
, (11)

where C is a dimensionless constant. If Λzz increases linearly, the z-decay follows
a power law, while if Λzz remains constant the decay is exponential with respect to
z. It must be stressed that neither a zero mean flow assumption nor isotropy and
homogeneity are required to reach this conclusion.

It should be pointed out that similar simple situations are used as reference cases
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for the determination of the parameters of turbulent models. Sonin (1983) used results
of decaying grid turbulence experiments to establish a relation between the constants
σk, σε, Cµ, Cε, Cε2 of the k – ε model (for definitions, see Rodi 1980). Assuming
one-dimensional diffusive turbulence and kinetic turbulent energy decaying in z−n, he
found

σk/σε =
3n2Cε2

2(1 + 2n)(1 + 3n/2)
. (12)

However, if we consider an exponential decay we find

σk/σε = 1
2
Cε2. (13)

Lele (1985) considered the diffusion in a quiescent fluid of turbulence produced by a
planar source. He established a relation of consistency

σk/σε = 6((4Cε2
2 + 1)1/2 − 2Cε2). (14)

Although these relations are all based upon ideal situations of diffusive turbulence,
they are all different. Furthermore, they are generally not satisfied by the usual sets of
constants. Following Rodi (1980), if we take σk = 1, σε = 1.3, Cε2 = 1.92, (12) implies
a decay exponent of n = 4.9 instead of the n = 2 found experimentally. Therefore,
two-equation one-point closure models are not able to predict such flows, dominated
by turbulent transport.

7. Turbulence budgets in the region dominated by diffusion
Additional insight can be gained from the analysis of the energy budgets of the

axial and radial velocity fluctuations in the region dominated by turbulent diffusion.
First, they will be presented and discussed in the transition region at z = 3.9D. Then,
we shall consider the self-similar region.

7.1. The transition region

Figure 16 shows the radial profiles of the terms governing the equations for u2
z

and u2
r (A2) and (A3), for z = 3.9D. The non-starred quantities are defined in

the appendix, the stars denote that these quantities are normalized by the value of

u2
z

3/2

/D on the axis. Neither dissipation nor terms involving pressure fluctuations have
been measured. In each equation, they are grouped in the rest which is defined as
Resti = Tp

i
+ Rp

i
+ Ei. Neither was the correlation between ur and uθ measured.

As a consequence, the turbulent diffusion Turr presented here is incomplete. Thus,

the remaining term of the u2
r equation also contains the correlation 2uru

2
θ/r which

is responsible for energy transfer between radial and azimuthal components of the
velocity fluctuations. Although this correlation vanishes at the axis, it may become
significant far from it. Besides, in the region under consideration the flow has not
yet reached its asymptotic behaviour. The determination of the z-derivatives of the
moments involved in some of the terms (Adzz, Adrz , Przz, Prrz , Tuzz and Turz)
would require the measurement of the z-evolution of these moments at different
r-locations. We have thus used a simplification assuming that their relative decay is
the same as at the axis. For each moment Mn(z, r), this assumption reads

∂Mn

∂z
≈ Mn

(Mn)r=0

(
∂Mn

∂z

)
r=0

. (15)
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Figure 16. Normal Reynolds stresses budget at z = 3.9D. (a) z-component: �, Ad∗zz; 2, Ad∗zr;
�, Pr∗zz; �, Pr∗zr; N, Tu∗zz; 4, Tu∗zr; •, Rest∗z . (b) r-component: �, Ad∗rz; 2, Ad∗rr; �, Pr∗rz;
�, Pr∗rr; N, Tu∗rz; 4, Tu∗rr; •, Rest∗r .

The profiles presented in figure 16 are, thus, exact on the axis, but only approximate
far from it.

The advection of energy by the radial mean flow is negligible in both the u2
z and u2

r

equations, Adzr ≈ 0 and Adrr ≈ 0. The same conclusion holds for the production
terms Przr and Prrz since the turbulent shear stress −ρuzur is weak. In addition,
the advection by the axial mean flow (Adzz , Adrz) and the production by normal
turbulent stress (Przz, Prrr) are significantly smaller than the axial turbulent diffusion
(Tuzz, Turz). Nevertheless, the radial turbulent diffusions (Tuzr, Turr) due to the
velocity fluctuations ur are not negligible in spite of the homogeneity of the Reynolds
stress tensor near the axis. While the contribution of Tuzr remains very weak in the
equation for u2

z , Turr is significant in the equation for u2
r .

Figure 17 summarises the energy transfers for a certain volume of fluid located at
the axis. The left- and right-hand boxes contain the energy in the axial and radial
velocity fluctuations respectively. The arrows joining the boxes represent the energy
transfer between the two velocity components while the others represent the spatial
flux in the given direction. The corresponding value of the dimensionless energy
transfer is given on each arrow. The energy of the z-velocity component is mainly
supplied by the axial turbulent diffusion since the corresponding term is dominant
(Tu∗zz = 14.4). The same is true for the energy of the r-component (Tu∗rz = 2.3).
The radial turbulent diffusion also plays a role, but not to the same extent, in the
energy budget (Tu∗zr = 2.7 and Tu∗rr = 1.0). With regard to these values, the turbulent
fluxes with respect to z supply more energy to the z- than to the r-fluctuating
component, acting against the turbulence isotropy. It may noted in passing that the
production through normal stresses also opposes the return to isotropy (Pr∗zz = 1.3
and Pr∗rr = Pr∗θθ = −0.35). Indeed, it induces an energy transfer from the mean flow
and from the radial and azimuthal velocity fluctuations to the axial component of
the turbulence.

At this location, the turbulence behaviour is close to the ideal case of diffusive
turbulence that we have defined in the introduction. The turbulence energy of
the axial fluctuations mainly results from the axial diffusion–dissipation balance.
Concerning the energy budget of the radial fluctuations, the radial turbulent diffusion
has also to be taken into account. As a whole, the diffusion mechanism of the
turbulent kinetic energy seems to be that described by (4). As the axial diffusion of
the z-velocity fluctuations is much greater than for the r-velocity, the evolution of
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the turbulent stress tensor toward isotropy is necessarily due to the terms involving
pressure fluctuations. However, this energetic isotropy has not yet been reached for
z = 3.9D, since the ratio between z- and r-velocity fluctuations is still 1.3. This value is
nearly the same as the values that have been obtained in oscillating grid experiments,
for example Hannoun et al. (1988) found 1.32.

7.2. The self-preserving region

From ze, all the statistical moments reach their asymptotic state and the turbulence
structure is self-preserving. Figure 18 shows the radial profiles of the terms governing
the equations for u2

z and u2
r , (A2) and (A3), at any cross-section of the final zone.

This figure is similar to figure 16, and the same remarks concerning Resti apply.
Nevertheless, an important difference must be pointed out: owing to the decaying
property of the various moments, (15) is exact so that no approximation is needed to
determine the z-derivatives away from the axis.

The structure of the turbulence field, shown in figure 18, has changed considerably
compared to the results of figure 16. Energetic isotropy is reached, but the flow remains
homogeneous in a central core limited to r 6 0.2D. In the energy budget, only the
advection by the radial mean flow (Adzr,Adrr) and the turbulence production by
turbulent shear stress (Przr,Prrz) remain negligible. The relative contributions of both
advection by the axial mean flow (Adzz,Adrz) and production by normal stresses
(Przz,Prrr) are greater than in the transition region. The major contributions are
still those of turbulence diffusion although axial diffusion (Tuzz,Turz) is smaller here
than in the transition region and than radial diffusion (Tuzr,Turr).

To understand the role of each contribution, the energy budget on the axis is
plotted in figure 19. Let us consider, as a first step, the transfers of energy in the axial
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Figure 18. Normal Reynolds stresses budget in the self-preserving zone. (a) z-component: �, Ad∗zz;
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direction. As in figure 17, the turbulent diffusion of the z-component is greater than
for the r-component since Tu∗zz = 3 and Tu∗rz = 1.5. This difference is still against the
isotropy of the Reynolds stress tensor. In contrast to this, the advection by the axial
mean velocity is the same for the two velocity components (Ad∗zz = Ad∗rz = −1). The
residual mean flow has another effect through the production by turbulent normal
stress (Pr∗zz and Pr∗rr). In isotropic situations, the sum of these terms exactly vanishes
in the turbulent kinetic energy balance, because of mass conservation. Then, the role
of Pr∗zz and Pr∗rr) consists in transferring the energy between the turbulent velocity
components. Here, the energy is taken from axial velocity fluctuations (Pr∗zz = −1)
and given to lateral velocity fluctuations (Pr∗rr = Pr∗θθ = +0.5). Interestingly, the
difference Pr∗zz −Pr∗rr compensates the difference of axial diffusion:

Tu∗zz + Ad∗zz + Pr∗zz = Tu∗rz + Ad∗rz + Pr∗rr = 1. (16)

Thus, the difference between the axial diffusion of u2
z and u2

r is compensated inde-
pendently of the terms involving the pressure fluctuations. It must be stressed that
this mechanism of energy transfer acts in such a way that it consolidates the isotropy
only if the mean velocity gradient ∂Uz/∂z is positive. This is the case here but not at
z = 3.9D. For this velocity gradient to contribute to the return to isotropy, the mean
velocity Uz must be negative since it must go to zero at infinity. Thus, it may be stated
that the isotropy of energy is related to a negative axial velocity (Uz < 0). Another
argument in favour of this assumption is that the energetic isotropy is obtained at
the cross-section, ze, where the sign of the velocity gradient changes (figure 2).

As a second step, let us discuss the transfer of energy in the radial direction
(figure 19). Even if the gradients of the second-order moments are small in a large
region around the axis, the radial turbulent diffusion is dominant (Tu∗zr = 5.2,Tu∗rr =
3.1). It must be noted that the turbulent diffusion is non-zero even with zero gradient
(∂u2

z/∂r ≈ 0, ∂u2
r /∂r ≈ 0). In contrast to what is observed in the axial direction, ur is

better correlated with u2
z than with u2

r . Consequently, the radial diffusion of the axial
component is more effective than that of the radial one. Besides, as suggested by the
velocity power spectra, the dissipation is the same for axial and radial fluctuations
(εz = εr). This remark leads to an interesting consequence for the energy balance.
Equation (16) may be written by replacing each side by its expression taken from
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(A2) and (A3) respectively. On discarding the negligible terms, this yields

Tu∗zr + Rp∗
z

+ Tp∗
z

= Tu∗rr + Rp∗
r

+ Tp∗
r
. (17)

Thus the difference between the radial turbulent diffusions of z- and r-components
(Tu∗zr = 5.2, Tu∗rr = 3.1) must be compensated by the terms involving the pressure
fluctuations (Tp∗

z
, Rp∗

z
, Tp∗

r
, Rp∗

r
) for isotropy to be maintained away from the

axis.
The physical mechanisms that control the self-preserving diffusive region appear to

be very different from the ideal ones, discussed in the introduction. Let us recall the
main features of the flow structure. The isotropy and homogeneity of the Reynolds
stress tensor are accurately obtained in a core region extending over about half the
tube width. The mean motion remains smaller than the turbulent motion since the
axial mean velocity is half of its r.m.s. fluctuation. Even if the mean motion is
essential for the diffusion balance, its kinetic energy represents only 1/12 of this of
turbulence. Thus, from energy considerations, i.e. for the second moments, the core
region can be said to be isotropic, two-dimensionally homogeneous and free of mean
flow. However, this conclusion does not hold for the third-order moments. Those
corresponding to axial diffusion are not zero on the axis, but they remain constant in
the core region. In contrast, those corresponding to radial diffusion vanish at the axis
but increase with r. Depending on the direction under consideration, the mechanisms
are entirely different. In the axial direction, the structure is non-homogeneous, but
the energetic isotropy is realized and maintained. Besides, the imbalance between
axial and radial diffusion is compensated by a redistribution mechanism due to the
presence of a positive gradient of mean velocity. In the radial direction homogeneity
and isotropy are realized at the second order. The diffusion imbalance has to be
compensated by the terms involving pressure fluctuations. It must stressed that there
exists a turbulent transport in the absence of a Reynolds stress gradient.

In the absence of radial homogeneity, no reason permits a priori the expectation



Diffusive turbulence in a confined jet experiment 257

of independence between axial and radial transfers. Besides, the terms Tp
z
, which is

related to axial transport by fluctuating pressure in (17), remains.

8. Discussion and conclusions
The theoretical issue, addressed in the introduction, can be summarized by the

following question. Does a stationary turbulent field without mean motion or two-
dimensionally homogeneous and energetically isotropic exist? Such a turbulent field
is the archetype of ‘diffusive turbulence’, that is a turbulence dominated by turbulent
diffusion and dissipation. The first motivation for tackling this problem is the
design of an experimental tool for studying the specific role of the turbulence upon
other phenomena. The second is to improve our knowledge of turbulent transport
mechanisms.

First, the work presented here is an attempt to experimentally generate a flow
field as close as possible to the ideal situation. Our method consists of using a jet
– a classical turbulent shear flow that is strongly inhomogeneous – in a confined
geometry. The results obtained here show that the flow field actually reaches a state
essentially dominated by the turbulent diffusion, but this situation is much more
complicated than the ideal case. As expected, the combination of longitudinal and
lateral confinement causes the mean flow to decrease progressively with z to zero.
After a distance from the inlet z/D = 3, the turbulence is essentially controlled by
a balance between turbulent transport and dissipation. Up to z/D = 4, the flow
field is very close to the one obtained in oscillating grid experiments and the large
scales of turbulence increase. However, near z/D = 4, the size of the largest eddies
reaches the tube diameter and stops growing. The tube boundaries act as a spatial
filter upon the eddy sizes. Hence, the lateral confinement restructures the flow again.
It reaches the asymptotic state of ‘confined diffusive turbulence’, near ze = 4.4D. The
properties of this turbulence have been determined in the present work. They are
summarized as follows: the integral scales remain constant; in the central part of the
tube (r/D 6 0.2), the Reynolds stress tensor is quite isotropic and two-dimensionally
homogeneous; all the statistical moments follow the same exponential law of decay,
leading to a self-preserving flow; a secondary mean flow exists whose energy is about
1/12 the turbulent kinetic energy.

Now, let us compare this particular turbulence with that obtained in oscillating grid
facilities. Though the way of generating turbulence is very different, the disparities
between the two kinds of experiments are, in fact, due to the size of the vessel.
Indeed, in oscillating grid experiments the lateral dimension is large in comparison
with the size of the largest eddies. Thus, the asymptotic state obtained can be
called ‘free diffusive turbulence’. The integral length scales increase linearly with the
distance from the grid. Is this situation nearer the ideal case than confined diffusive
turbulence? Concerning isotropy, the answer is no. Fernando & De Silva (1993)
have summarized the results of oscillating grid experiments and the ratio between
longitudinal and lateral r.m.s. velocities is about 1.2. For the presence of secondary
mean flow, the answer is less clear. As already mentioned, large mean flow structures
have been observed by Hopfinger & Toly (1976) and McDougall (1979) in oscillating
grid experiments, but Fernando & De Silva (1993) have shown that they can be
suppressed by a judicious choice of the grid shape. Still, there is no evidence that
a weak mean flow related to turbulence mechanisms does not exist as in confined
jet experiments, but how weak is weak? Following Hopfinger & Toly (1976), weak
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means that the kinetic energy of the mean flow is about 10% of the turbulent kinetic
energy which is similar to the level that we found.

There is at present no experimental evidence that energetically isotropic and two-
dimensionally homogeneous turbulence does exist in the absence of mean flow. Why
is this so? It is generally considered that the cause of anisotropy is turbulence
production. It is expected that, in the absence of production, isotropy could be
realized. Although true for homogeneous turbulence, this conclusion has to be
reconsidered for diffusive turbulence. Indeed, the lack of homogeneity in one direction
is another cause of anisotropy through the triple correlations. On the one hand,
their existence violates the necessary condition of isotropy. On the other hand,
they lead to a difference of diffusion between longitudinal and lateral fluctuations
that has to be compensated. In the present confined jet experiment, an original
mechanism involving the mean velocity gradient of the secondary flow compensates
this imbalance. In oscillating grid experiments, only the pressure fluctuations can
redistribute the excess of diffusion of the longitudinal fluctuations over the lateral ones;
however, all experimental results show that the Reynolds stress tensor is not isotropic.

Despite this result, diffusive turbulence remains a very interesting tool for studying
the role of turbulence in specific problems. For this purpose, researchers can now
use two types of experimental system: the oscillating grid and the confined jet in a
closed tube. The first generates unbounded turbulence with kinetic energy decreasing
as the square of the distance from the grid and integral length scales increasing
linearly. The second produces confined diffusive turbulence with turbulent kinetic
energy decaying exponentially with the distance from the nozzle and integral length
scales remaining constant. In both systems, the turbulent kinetic energy can be varied
without modifying the flow structure; it is at least one order of magnitude greater
than that of mean flow.

In general, turbulent flows dominated by triple correlations are poorly understood.
Up to now, three different situations have been investigated by several authors. The
first and simplest case corresponds to ‘free diffusive turbulence’ in which neither
advection nor a boundary are present (see the introduction for references). The
second is ‘confined diffusive turbulence’, discussed in the present article, in which the
boundaries play a significant role. The third is the shearless turbulence mixing layer
of Veeravalli & Warhaft (1989), in which the flow is controlled by turbulent transport
in the spanwise direction and by advection in the streamwise direction. For these
different cases, the statistics of the velocity field are non-Gaussian and the flow is
highly intermittent. Veeravalli & Warhaft and the present results have shown that if
the statistics are Gaussian in the regions where the flow is dominated by production
and/or advection, they are not where turbulent transport is predominant.

Another property, exhibited in these two situations, is that turbulent transport can-
not be fully explained by a diffusion mechanism. To explain the spreading mechanism
of their mixing layer, Veeravalli & Warhaft have distinguished ‘turbulent diffusion’
from the mixing by ‘intermittent penetration’. Likewise, we have shown here that
significant turbulent transport takes place in the radial direction although Reynolds
stress gradients are negligible. Thus, if only one-point moments are considered, third-
order moments are needed to take into account the influence of the confinement. The
consequences are of major importance for modelling. For instance, it not surprising
that the different attempts of Sonin (1983) and Lele (1985) to use diffusive turbulence
for adjusting the constants of k–ε models lead to contradictory results: the triple
correlations or the turbulent transport by pressure cannot always be expressed as
functions of the Reynolds stresses.
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Appendix A. Notation and equations
The equations for the turbulent energy are written below in Cartesian and cylindri-

cal coordinates for steady flow. Ui and ui denote the i-components of the mean and
fluctuating velocities, p the fluctuating pressure. The overbar is used to denote the
time averages of the correlations. With the intention of emphasizing the role of each
term of the balance equations for the Reynolds stresses, these terms are designated
as Ad for the advection by the mean flow, Tp and Tu for the turbulent transport
(also called turbulent diffusion) by pressure and velocity fluctuations, Rp for the
redistribution by pressure fluctuations, Pr for the production, Dv for the diffusion
by viscosity and E for the dissipation by turbulent motion. In the figures and the
discussion these quantities are denoted by a star when they are normalized by the

axis value of u2
z

3/2

/D.

A.1. Normal Reynolds stress equations in Cartesian coordinates

Let e = u2
x + u2

y + u2
z be the instantaneous energy of the turbulent motion. Its time

average ē involves the contribution u2
i of each component i of the fluctuating velocity.

The balance equation for each contribution may be written

Adi + Tp
i
+ Rp

i
+ Pri + Tui + Dvi + Ei = 0, (A 1)

with the following definitions:

Adi = −
(
Ux

∂

∂x
+Uy

∂

∂y
+Uz

∂

∂z

)
u2
i , Tp

i
= −2

ρ

∂

∂xi
pui, Rp

i
=

2

ρ
p
∂ui

∂xi
,

Pri = −2

(
uiux

∂

∂x
+ uiuy

∂

∂y
+ uiuz

∂

∂z

)
Ui, Tui = −

(
∂

∂x
uxu

2
i +

∂

∂y
uyu

2
i +

∂

∂z
uzu

2
i

)
Dvi = ν∇2u2

i , Ei = 2εi = −2ν

[(
∂ui

∂x

)2

+

(
∂ui

∂y

)2

+

(
∂ui

∂z

)2
]
.

With these definitions, each term corresponding to a gain of energy is positive.

A.2. Normal Reynolds stress equations in cylindrical coordinates

The above equations are written below for an axisymmetric flow. The diffusion by
viscosity Dv being negligible, it will thus be disregarded. The fluxes by pressure
(velocity) fluctuations Tp (Tui) will be split into their axial and radial contributions
Tp

iz
and Tp

ir
(Tuiz and Tuir). In a like manner, Pri will be split into the production

by normal and shear stresses. The equation for u2
z becomes

Adzz + Adzr + Tp
z

+ Rp
z

+ Przz + Przr + Tuzz + Tuzr + Ez = 0, (A 2)

with the following definitions:

Adzz = −Uz

∂

∂z
u2
z , Adzr = −Ur

∂

∂r
u2
z , Tp

z
= −2

ρ

∂

∂z
puz, Rp

z
=

2

ρ
p
∂uz

∂z
,

Przz = −2u2
z

∂Uz

∂z
, Przr = −2uzur

∂Uz

∂r
, Tuzz = − ∂

∂z
u3
z , Tuzr = −1

r

∂

∂r
ruru2

z ,

Ez = 2εz = −2ν

[ (
∂uz

∂z

)2

+

(
∂uz

∂r

)2

+

(
1

r

∂uz

∂θ

)2
]
.
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The equation for u2
r reads

Adrz + Adrr + Tp
r

+ Rp
r

+ Prrz + Prrr + Turz + Turr + Er = 0, (A 3)

with

Adrz = −Uz

∂

∂z
u2
r , Adrr = −Ur

∂

∂r
u2
r , Tp

r
= −2

ρ

∂

∂r
pur, Rp

r
=

2

ρ
p
∂ur

∂r
,

Prrz = −2uzur
∂Ur

∂z
, Prrr = −2u2

r

∂Ur

∂r
, Turz = − ∂

∂z
uzu2

r ,

Turr = − ∂

∂r
u3
r +

2

r
uru

2
θ, Er = 2εr = −2ν

[ (
∂ur

∂z

)2

+

(
∂ur

∂r

)2

+

(
1

r

∂ur

∂θ

)2
]
.

The equation for u2
θ will not be written: only the term Prθθ needs to be expressed. It

is similar to Przz and Prrr for the azimuthal fluctuations, Prθθ = −2Ur u
2
θ/r. On the

axis of symmetry it is equal to Prrr .
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cône à potentiel-intermittence. Intl J. Heat Mass Transfer 12, 1679–1697.

Thompson, S. M. & Turner, J. S. 1975 Mixing across an interface due to turbulence generated by
an oscillating grid. J. Fluid Mech. 67, 349–368.

Turner J. S. 1968 The influence of molecular diffusivity on turbulent entrainment across a density
interface. J. Fluid Mech. 33, 639–656.

Uberoi, M. S. 1963 Energy transfer in isotropic turbulence. Phys. Fluids 6, 1048–1056.

Veeravalli, S. & Warhaft, Z. 1989 The shearless turbulence mixing layer. J. Fluid Mech. 207,
191–229.


